Source code for bigdl.orca.learn.tf.estimator

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pyspark.sql import DataFrame

from bigdl.dllib.optim.optimizer import MaxEpoch

from bigdl.orca.tfpark.tf_dataset import _standardize_keras_target_data
from bigdl.dllib.utils.file_utils import enable_multi_fs_load, enable_multi_fs_load_static, \
    enable_multi_fs_save
from bigdl.orca import OrcaContext
from bigdl.orca.data.tf.data import Dataset
from bigdl.orca.data.tf.tf1_data import TF1Dataset
from bigdl.orca.data import SparkXShards
from bigdl.orca.learn.tf.utils import *
from bigdl.orca.learn.trigger import Trigger
from bigdl.orca.learn.utils import find_latest_checkpoint, convert_predict_rdd_to_xshard, \
    convert_predict_rdd_to_dataframe, process_xshards_of_pandas_dataframe
from bigdl.orca.tfpark import KerasModel
from bigdl.orca.tfpark import TFOptimizer, TFNet, ZooOptimizer
from bigdl.orca.tfpark.tf_optimizer import StatelessMetric
from bigdl.orca.tfpark.utils import evaluate_metrics
from bigdl.dllib.utils import nest
from bigdl.dllib.utils.tf import save_tf_checkpoint, load_tf_checkpoint
from bigdl.orca.learn.spark_estimator import Estimator as SparkEstimator
from bigdl.dllib.utils.log4Error import *


[docs]class Estimator(SparkEstimator):
[docs] def fit(self, data, epochs, batch_size=32, feature_cols=None, label_cols=None, validation_data=None, session_config=None, checkpoint_trigger=None, auto_shard_files=False): """ Train the model with train data. :param data: train data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a tuple of numpy arrays. :param epochs: number of epochs to train. :param batch_size: total batch size for each iteration. Default: 32. :param feature_cols: feature column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param label_cols: label column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param validation_data: validation data. Validation data type should be the same as train data. :param session_config: tensorflow session configuration for training. Should be object of tf.ConfigProto :param checkpoint_trigger: when to trigger checkpoint during training. Should be a bigdl.orca.learn.trigger, like EveryEpoch(), SeveralIteration( num_iterations),etc. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. """ invalidInputError(False, "not implemented")
[docs] def predict(self, data, batch_size=4, feature_cols=None, auto_shard_files=False): """ Predict input data :param data: data to be predicted. It can be XShards, Spark DataFrame. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature}, where feature is a numpy array or a tuple of numpy arrays. :param batch_size: batch size per thread :param feature_cols: list of feature column names if input data is Spark DataFrame or XShards of Pandas DataFrame. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. :return: predicted result. If input data is XShards or tf.data.Dataset, the predict result is a XShards, each partition of the XShards is a dictionary of {'prediction': result}, where the result is a numpy array or a list of numpy arrays. If input data is Spark DataFrame, the predict result is a DataFrame which includes original columns plus 'prediction' column. The 'prediction' column can be FloatType, VectorUDT or Array of VectorUDT depending on model outputs shape. """ invalidInputError(False, "not implemented")
[docs] def evaluate(self, data, batch_size=32, feature_cols=None, label_cols=None, auto_shard_files=False): """ Evaluate model. :param data: evaluation data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a tuple of numpy arrays. If data is tf.data.Dataset, each element is a tuple of input tensors. :param batch_size: batch size per thread. :param feature_cols: feature_cols: feature column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param label_cols: label column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. :return: evaluation result as a dictionary of {'metric name': metric value} """ invalidInputError(False, "not implemented")
[docs] def get_model(self): """ Get the trained Tensorflow model :return: Trained model """ invalidInputError(False, "not implemented")
[docs] def save(self, model_path): """ Save model to model_path :param model_path: path to save the trained model. :return: """ invalidInputError(False, "not implemented")
[docs] def load(self, model_path): """ Load existing model :param model_path: Path to the existing model. :return: """ invalidInputError(False, "not implemented")
[docs] def clear_gradient_clipping(self): """ Clear gradient clipping parameters. In this case, gradient clipping will not be applied. In order to take effect, it needs to be called before fit. :return: """ invalidInputError(False, "not implemented")
[docs] def set_constant_gradient_clipping(self, min, max): """ Set constant gradient clipping during the training process. In order to take effect, it needs to be called before fit. :param min: The minimum value to clip by. :param max: The maximum value to clip by. :return: """ invalidInputError(False, "not implemented")
[docs] def set_l2_norm_gradient_clipping(self, clip_norm): """ Clip gradient to a maximum L2-Norm during the training process. In order to take effect, it needs to be called before fit. :param clip_norm: Gradient L2-Norm threshold. :return: """ invalidInputError(False, "not implemented")
[docs] def get_train_summary(self, tag=None): """ Get the scalar from model train summary. This method will return a list of summary data of [iteration_number, scalar_value, timestamp]. :param tag: The string variable represents the scalar wanted """ if self.tf_optimizer: return self.tf_optimizer.estimator.get_train_summary(tag) return None
[docs] def get_validation_summary(self, tag=None): """ Get the scalar from model validation summary. This method will return a list of summary data of [iteration_number, scalar_value, timestamp]. Note that the metric and tag may not be consistent. Please look up following form to pass tag parameter. Left side is your metric during compile. Right side is the tag you should pass. >>> 'Accuracy' | 'Top1Accuracy' >>> 'BinaryAccuracy' | 'Top1Accuracy' >>> 'CategoricalAccuracy' | 'Top1Accuracy' >>> 'SparseCategoricalAccuracy' | 'Top1Accuracy' >>> 'AUC' | 'AucScore' >>> 'HitRatio' | 'HitRate@k' (k is Top-k) >>> 'Loss' | 'Loss' >>> 'MAE' | 'MAE' >>> 'NDCG' | 'NDCG' >>> 'TFValidationMethod' | '${name + " " + valMethod.toString()}' >>> 'Top5Accuracy' | 'Top5Accuracy' >>> 'TreeNNAccuracy' | 'TreeNNAccuracy()' >>> 'MeanAveragePrecision' | 'MAP@k' (k is Top-k) (BigDL) >>> 'MeanAveragePrecision' | 'PascalMeanAveragePrecision' (Zoo) >>> 'StatelessMetric' | '${name}' :param tag: The string variable represents the scalar wanted """ if self.tf_optimizer: for val_method in self.tf_optimizer.tf_model.val_methods: if isinstance(val_method, StatelessMetric): if tag == val_method.name: return self.tf_optimizer.estimator.get_validation_summary(tag) else: if tag == str(val_method.val_method): return self.tf_optimizer.estimator. \ get_validation_summary("{} {}".format(val_method.name, tag)) continue return None
[docs] def save_tf_checkpoint(self, path): """ Save tensorflow checkpoint in this estimator. :param path: tensorflow checkpoint path. """ invalidInputError(False, "not implemented")
[docs] def load_tf_checkpoint(self, path): """ Load tensorflow checkpoint to this estimator. :param path: tensorflow checkpoint path. """ invalidInputError(False, "not implemented")
[docs] def save_keras_model(self, path, overwrite=True): """ Save tensorflow keras model in this estimator. :param path: keras model save path. :param overwrite: Whether to silently overwrite any existing file at the target location. """ invalidInputError(False, "not implemented")
[docs] def save_keras_weights(self, filepath, overwrite=True, save_format=None): """ Save tensorflow keras model weights in this estimator. :param filepath: keras model weights save path. :param overwrite: Whether to silently overwrite any existing file at the target location. :param save_format: Either 'tf' or 'h5'. A `filepath` ending in '.h5' or '.keras' will default to HDF5 if `save_format` is `None`. Otherwise `None` defaults to 'tf'. """ invalidInputError(False, "not implemented")
[docs] def load_keras_weights(self, filepath, by_name=False): """ Save tensorflow keras model in this estimator. :param filepath: keras model weights save path. :param by_name: Boolean, whether to load weights by name or by topological order. Only topological loading is supported for weight files in TensorFlow format. """ invalidInputError(False, "not implemented")
[docs] def load_orca_checkpoint(self, path, version=None): """ Load Orca checkpoint. To load a specific checkpoint, please provide a `version`. If `version` is None, then the latest checkpoint will be loaded. :param path: checkpoint directory which contains model.* and optimMethod-TFParkTraining.* files. :param version: checkpoint version, which is the suffix of model.* file, i.e., for modle.4 file, the version is 4. """ if version is None: path, _, version = find_latest_checkpoint(path, model_type="tf") if path is None: invalidInputError(False, "Cannot find tf checkpoint, please check your checkpoint" " path.") self.load_checkpoint = True self.checkpoint_path = path self.checkpoint_version = version
[docs] @staticmethod def from_graph(*, inputs, outputs=None, labels=None, loss=None, optimizer=None, metrics=None, clip_norm=None, clip_value=None, updates=None, sess=None, model_dir=None, backend="bigdl"): """ Create an Estimator for tesorflow graph. :param inputs: input tensorflow tensors. :param outputs: output tensorflow tensors. :param labels: label tensorflow tensors. :param loss: The loss tensor of the TensorFlow model, should be a scalar :param optimizer: tensorflow optimization method. :param clip_norm: float >= 0. Gradients will be clipped when their L2 norm exceeds this value. :param clip_value: a float >= 0 or a tuple of two floats. If clip_value is a float, gradients will be clipped when their absolute value exceeds this value. If clip_value is a tuple of two floats, gradients will be clipped when their value less than clip_value[0] or larger than clip_value[1]. :param metrics: metric tensor. :param updates: Collection for the update ops. For example, when performing batch normalization, the moving_mean and moving_variance should be updated and the user should add tf.GraphKeys.UPDATE_OPS to updates. Default is None. :param sess: the current TensorFlow Session, if you want to used a pre-trained model, you should use the Session to load the pre-trained variables and pass it to estimator :param model_dir: location to save model checkpoint and summaries. :param backend: backend for estimator. Now it only can be "bigdl". :return: an Estimator object. """ invalidInputError(backend == "bigdl", "only bigdl backend is supported for now") return TensorFlowEstimator(inputs=inputs, outputs=outputs, labels=labels, loss=loss, optimizer=optimizer, metrics=metrics, clip_norm=clip_norm, clip_value=clip_value, updates=updates, sess=sess, model_dir=model_dir )
[docs] @staticmethod def from_keras(keras_model, metrics=None, model_dir=None, optimizer=None, backend="bigdl"): """ Create an Estimator from a tensorflow.keras model. The model must be compiled. :param keras_model: the tensorflow.keras model, which must be compiled. :param metrics: user specified metric. :param model_dir: location to save model checkpoint and summaries. :param optimizer: an optional orca optimMethod that will override the optimizer in keras_model.compile :param backend: backend for estimator. Now it only can be "bigdl". :return: an Estimator object. """ invalidInputError(backend == "bigdl", "only bigdl backend is supported for now") return KerasEstimator(keras_model, metrics, model_dir, optimizer)
[docs] @staticmethod @enable_multi_fs_load_static def load_keras_model(path): """ Create Estimator by loading an existing keras model (with weights) from HDF5 file. :param path: String. The path to the pre-defined model. :return: Orca TF Estimator. """ from tensorflow.python.keras import models model = models.load_model(path) return Estimator.from_keras(keras_model=model)
[docs]def is_tf_data_dataset(data): is_dataset = isinstance(data, tf.data.Dataset) is_dataset_v2 = isinstance(data, tf.python.data.ops.dataset_ops.DatasetV2) return is_dataset or is_dataset_v2
[docs]def to_dataset(data, batch_size, batch_per_thread, validation_data, feature_cols, label_cols, hard_code_batch_size, sequential_order, shuffle, auto_shard_files, memory_type="DRAM"): # todo wrap argument into kwargs if validation_data: if isinstance(data, SparkXShards): invalidInputError(isinstance(validation_data, SparkXShards), "train data and validation data should be both SparkXShards") if isinstance(data, Dataset): invalidInputError(isinstance(validation_data, Dataset), "train data and validation data should be both" " orca.data.tf.Dataset") if isinstance(data, DataFrame): invalidInputError(isinstance(validation_data, DataFrame), "train data and validation data should be both Spark DataFrame") if isinstance(data, tf.data.Dataset): invalidInputError(isinstance(validation_data, tf.data.Dataset), "train data and validation data should be both tf.data.Dataset") if isinstance(data, SparkXShards): dataset = xshards_to_tf_dataset(data, batch_size, batch_per_thread, validation_data, hard_code_batch_size=hard_code_batch_size, memory_type=memory_type, sequential_order=sequential_order, shuffle=shuffle) elif isinstance(data, Dataset): dataset = TF1Dataset(data, batch_size=batch_size, batch_per_thread=batch_per_thread, validation_dataset=validation_data) elif isinstance(data, DataFrame): dataset = TFDataset.from_dataframe(data, feature_cols, label_cols, batch_size, batch_per_thread, hard_code_batch_size, validation_data, memory_type, sequential_order, shuffle ) elif is_tf_data_dataset(data): dataset = TFDataset.from_tf_data_dataset(data, batch_size, batch_per_thread, hard_code_batch_size, validation_data, sequential_order, shuffle, auto_shard_files=auto_shard_files) else: invalidInputError(False, "data must be SparkXShards or orca.data.tf.Dataset or " "Spark DataFrame or tf.data.Dataset") return dataset
[docs]def save_model_dir(model_dir): if model_dir.startswith("dbfs:/"): model_dir = "/dbfs/" + model_dir[len("dbfs:/"):] return model_dir
[docs]class TensorFlowEstimator(Estimator): def __init__(self, *, inputs, outputs, labels, loss, optimizer, clip_norm, clip_value, metrics, updates, sess, model_dir): self.inputs = inputs self.outputs = outputs self.labels = labels self.loss = loss self.use_bigdl_optim = False self.clip_norm = clip_norm self.clip_value = clip_value if optimizer is not None: from bigdl.orca.learn.optimizers import Optimizer if isinstance(optimizer, Optimizer): self.train_op = None self.optimizer = optimizer.get_optimizer() self.use_bigdl_optim = True else: invalidInputError(isinstance(optimizer, tf.train.Optimizer), f"optimizer is of type {str(type(optimizer))}," f" it should be an instance of tf.train.Optimizer") self.optimizer = ZooOptimizer(optimizer) if clip_norm or clip_value: gvs = self.optimizer.compute_gradients(self.loss) if clip_norm: gvs = [(tf.clip_by_norm(g_v[0], clip_norm), g_v[1]) for g_v in gvs] if clip_value: if isinstance(clip_value, tuple): invalidInputError( len(clip_value) == 2 and clip_value[0] < clip_value[1], "clip value should be (clip_min, clip_max)") gvs = [(tf.clip_by_value(g_v[0], clip_value[0], clip_value[1]), g_v[1]) for g_v in gvs] if isinstance(clip_value, (int, float)): invalidInputError(clip_value > 0, "clip value should be larger than 0") gvs = [(tf.clip_by_value(g_v[0], -clip_value, clip_value), g_v[1]) for g_v in gvs] else: invalidInputError(False, "clip_value should be a tuple or one number") self.train_op = self.optimizer.apply_gradients(gvs) else: self.train_op = self.optimizer.minimize(self.loss) else: self.optimizer = None self.train_op = None self.metrics = metrics self.updates = updates if sess is None: self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) else: self.sess = sess self.model_dir = model_dir self.load_checkpoint = False self.tf_optimizer = None self.log_dir = None self.app_name = None
[docs] def fit(self, data, epochs=1, batch_size=32, feature_cols=None, label_cols=None, validation_data=None, session_config=None, checkpoint_trigger=None, auto_shard_files=False, feed_dict=None ): """ Train this graph model with train data. :param data: train data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a tuple of numpy arrays. If data is tf.data.Dataset, each element is a tuple of input tensors. :param epochs: number of epochs to train. :param batch_size: total batch size for each iteration. :param feature_cols: feature column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param label_cols: label column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param validation_data: validation data. Validation data type should be the same as train data. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. :param session_config: tensorflow session configuration for training. Should be object of tf.ConfigProto :param feed_dict: a dictionary. The key is TensorFlow tensor, usually a placeholder, the value of the dictionary is a tuple of two elements. The first one of the tuple is the value to feed to the tensor in training phase and the second one is the value to feed to the tensor in validation phase. :param checkpoint_trigger: when to trigger checkpoint during training. Should be a bigdl.orca.learn.trigger, like EveryEpoch(), SeveralIteration( num_iterations),etc. """ invalidInputError(self.labels is not None, "labels is None; it should not be None in training") invalidInputError(self.loss is not None, "loss is None; it should not be None in training") invalidInputError(self.optimizer is not None, "optimizer is None; it should not be None in training") if isinstance(data, DataFrame): invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in training") invalidInputError(label_cols is not None, "label columns is None; it should not be None in training") if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in training") invalidInputError(label_cols is not None, "label columns is None; it should not be None in training") data, validation_data = process_xshards_of_pandas_dataframe(data, feature_cols, label_cols, validation_data, "fit") if checkpoint_trigger is not None: checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) memory_type = OrcaContext.train_data_store dataset = to_dataset(data, batch_size=batch_size, batch_per_thread=-1, validation_data=validation_data, feature_cols=feature_cols, label_cols=label_cols, hard_code_batch_size=False, sequential_order=False, shuffle=True, auto_shard_files=auto_shard_files, memory_type=memory_type ) if feed_dict is not None: tensor_with_value = {key: (value[0], value[1]) for key, value in feed_dict.items()} else: tensor_with_value = None if self.use_bigdl_optim: self.tf_optimizer = TFOptimizer.from_loss( self.loss, self.optimizer, session=self.sess, inputs=(self.inputs, self.labels), dataset=dataset, clip_norm=self.clip_norm, clip_value=self.clip_value, metrics=self.metrics, tensor_with_value=tensor_with_value, session_config=session_config, model_dir=self.model_dir, updates=self.updates) else: self.tf_optimizer = TFOptimizer.from_train_op( train_op=self.train_op, loss=self.loss, inputs=self.inputs, labels=self.labels, dataset=dataset, metrics=self.metrics, updates=self.updates, sess=self.sess, tensor_with_value=tensor_with_value, session_config=session_config, model_dir=self.model_dir) if self.load_checkpoint: self.tf_optimizer.load_checkpoint(self.checkpoint_path, self.checkpoint_version) if self.log_dir and self.app_name: self.tf_optimizer.estimator.set_tensorboard(self.log_dir, self.app_name) self.tf_optimizer.optimize(end_trigger=MaxEpoch(epochs), checkpoint_trigger=checkpoint_trigger) return self
[docs] def predict(self, data, batch_size=4, feature_cols=None, auto_shard_files=False, ): """ Predict input data :param data: data to be predicted. It can be XShards, Spark DataFrame. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature}, where feature is a numpy array or a tuple of numpy arrays. :param batch_size: batch size per thread :param feature_cols: list of feature column names if input data is Spark DataFrame or XShards of Pandas DataFrame. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. :return: predicted result. If input data is XShards or tf.data.Dataset, the predict result is a XShards, each partition of the XShards is a dictionary of {'prediction': result}, where the result is a numpy array or a list of numpy arrays. If input data is Spark DataFrame, the predict result is a DataFrame which includes original columns plus 'prediction' column. The 'prediction' column can be FloatType, VectorUDT or Array of VectorUDT depending on model outputs shape. """ invalidInputError(self.outputs is not None, "output is None, it should not be None in prediction") if isinstance(data, DataFrame): invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in prediction") if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in prediction") data = process_xshards_of_pandas_dataframe(data, feature_cols) invalidInputError(not is_tf_data_dataset(data), "tf.data.Dataset currently cannot be used for estimator prediction") dataset = to_dataset(data, batch_size=-1, batch_per_thread=batch_size, validation_data=None, feature_cols=feature_cols, label_cols=None, hard_code_batch_size=False, sequential_order=True, shuffle=False, auto_shard_files=auto_shard_files, ) flat_inputs = nest.flatten(self.inputs) flat_outputs = nest.flatten(self.outputs) tfnet = TFNet.from_session(sess=self.sess, inputs=flat_inputs, outputs=flat_outputs) predicted_rdd = tfnet.predict(dataset) if isinstance(data, DataFrame): return convert_predict_rdd_to_dataframe(data, predicted_rdd) elif isinstance(data, SparkXShards): return convert_predict_rdd_to_xshard(data, predicted_rdd) else: return predicted_rdd
[docs] def evaluate(self, data, batch_size=32, feature_cols=None, label_cols=None, auto_shard_files=False, ): """ Evaluate model. :param data: evaluation data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a tuple of numpy arrays. If data is tf.data.Dataset, each element is a tuple of input tensors. :param batch_size: batch size per thread. :param feature_cols: feature_cols: feature column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param label_cols: label column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. :return: evaluation result as a dictionary of {'metric name': metric value} """ invalidInputError(self.metrics is not None, "metrics is None, it should not be None in evaluate") if isinstance(data, DataFrame): invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in evaluation") invalidInputError(label_cols is not None, "label columns is None; it should not be None in evaluation") if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in evaluation") invalidInputError(label_cols is not None, "label columns is None; it should not be None in evaluation") data = process_xshards_of_pandas_dataframe(data, feature_cols, label_cols) dataset = to_dataset(data, batch_size=-1, batch_per_thread=batch_size, validation_data=None, feature_cols=feature_cols, label_cols=label_cols, hard_code_batch_size=False, sequential_order=True, shuffle=False, auto_shard_files=auto_shard_files, ) flat_inputs = nest.flatten(self.inputs) flat_labels = nest.flatten(self.labels) return evaluate_metrics(flat_inputs + flat_labels, sess=self.sess, dataset=dataset, metrics=self.metrics)
[docs] def save_tf_checkpoint(self, path): """ Save tensorflow checkpoint in this estimator. :param path: tensorflow checkpoint path. """ save_tf_checkpoint(self.sess, path)
[docs] def load_tf_checkpoint(self, path): """ Load tensorflow checkpoint to this estimator. :param path: tensorflow checkpoint path. """ load_tf_checkpoint(self.sess, path)
[docs] def get_model(self): """ Get_model is not supported in tensorflow graph estimator """ invalidInputError(False, "not implemented")
[docs] def save(self, model_path): """ Save model (tensorflow checkpoint) to model_path :param model_path: path to save the trained model. :return: """ self.save_tf_checkpoint(model_path)
[docs] def load(self, model_path): """ Load existing model (tensorflow checkpoint) from model_path :param model_path: Path to the existing tensorflow checkpoint. :return: """ self.load_tf_checkpoint(model_path)
[docs] def clear_gradient_clipping(self): """ Clear gradient clipping is not supported in TensorFlowEstimator. """ invalidInputError(False, "not implemented")
[docs] def set_constant_gradient_clipping(self, min, max): """ Set constant gradient clipping is not supported in TensorFlowEstimator. Please pass the clip_value to Estimator.from_graph. """ invalidInputError(False, "not implemented")
[docs] def set_l2_norm_gradient_clipping(self, clip_norm): """ Set l2 norm gradient clipping is not supported in TensorFlowEstimator. Please pass the clip_norm to Estimator.from_graph. """ invalidInputError(False, "not implemented")
[docs] def shutdown(self): """ Close TensorFlow session and release resources. """ self.sess.close()
[docs]class KerasEstimator(Estimator): def __init__(self, keras_model, metrics, model_dir, optimizer): if model_dir and model_dir.startswith("dbfs:/"): model_dir = save_model_dir(model_dir) self.model = KerasModel(keras_model, model_dir) self.load_checkpoint = False self.metrics = metrics self.tf_optimizer = None self.optimizer = optimizer from bigdl.orca.learn.optimizers import Optimizer if self.optimizer is not None and isinstance(self.optimizer, Optimizer): self.optimizer = self.optimizer.get_optimizer() self.log_dir = None self.app_name = None self.clip_norm = None self.clip_min = None self.clip_max = None
[docs] def fit(self, data, epochs=1, batch_size=32, feature_cols=None, label_cols=None, validation_data=None, session_config=None, checkpoint_trigger=None, auto_shard_files=False ): """ Train this keras model with train data. :param data: train data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a tuple of numpy arrays. If data is tf.data.Dataset, each element is [feature tensor tuple, label tensor tuple] :param epochs: number of epochs to train. :param batch_size: total batch size for each iteration. :param feature_cols: feature column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param label_cols: label column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param validation_data: validation data. Validation data type should be the same as train data. :param session_config: tensorflow session configuration for training. Should be object of tf.ConfigProto :param checkpoint_trigger: when to trigger checkpoint during training. Should be a bigdl.orca.learn.trigger, like EveryEpoch(), SeveralIteration( num_iterations),etc. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. """ if isinstance(data, DataFrame): invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in training") invalidInputError(label_cols is not None, "label columns is None; it should not be None in training") if isinstance(data, tf.data.Dataset): invalidInputError(isinstance(data.element_spec, tuple), "If data is tf.data.Dataset, each element should be" " (feature tensors, label tensor), where each feature/label" " tensor can be either a single tensor or a tuple of tensors") if validation_data is not None: invalidInputError(isinstance(validation_data, tf.data.Dataset), "train data and validation data should be both" " tf.data.Dataset") invalidInputError(isinstance(validation_data.element_spec, tuple), "If validation_data is tf.data.Dataset, each element should be" " (feature tensors, label tensor), where each feature/label" " tensor can be either a single tensor or a tuple of tensors") if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in training") invalidInputError(label_cols is not None, "label columns is None; it should not be None in training") data, validation_data = process_xshards_of_pandas_dataframe(data, feature_cols, label_cols, validation_data, "fit") if checkpoint_trigger is not None: checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) if is_tf_data_dataset(data): data = data.map(_standardize_keras_target_data) validation_data = validation_data.map(_standardize_keras_target_data) memory_type = OrcaContext.train_data_store dataset = to_dataset(data, batch_size=batch_size, batch_per_thread=-1, validation_data=validation_data, feature_cols=feature_cols, label_cols=label_cols, hard_code_batch_size=False, sequential_order=False, shuffle=True, auto_shard_files=auto_shard_files, memory_type=memory_type) self.tf_optimizer = TFOptimizer.from_keras(self.model.model, dataset, model_dir=self.model.model_dir, session_config=session_config, metrics=self.metrics, optimizer=self.optimizer) if self.clip_norm: self.tf_optimizer.set_gradient_clipping_by_l2_norm(clip_norm=self.clip_norm) if self.clip_min and self.clip_max: self.tf_optimizer.set_constant_gradient_clipping(self.clip_min, self.clip_max) if self.load_checkpoint: self.tf_optimizer.load_checkpoint(self.checkpoint_path, self.checkpoint_version) if self.log_dir and self.app_name: self.tf_optimizer.estimator.set_tensorboard(self.log_dir, self.app_name) self.tf_optimizer.optimize(MaxEpoch(epochs), checkpoint_trigger=checkpoint_trigger) return self
[docs] def predict(self, data, batch_size=4, feature_cols=None, auto_shard_files=False, ): """ Predict input data :param data: data to be predicted. It can be XShards, Spark DataFrame, or tf.data.Dataset. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature}, where feature is a numpy array or a tuple of numpy arrays. If data is tf.data.Dataset, each element is feature tensor tuple :param batch_size: batch size per thread :param feature_cols: list of feature column names if input data is Spark DataFrame or XShards of Pandas DataFrame. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. :return: predicted result. If input data is XShards or tf.data.Dataset, the predict result is also a XShards, and the schema for each result is: {'prediction': predicted numpy array or list of predicted numpy arrays}. If input data is Spark DataFrame, the predict result is a DataFrame which includes original columns plus 'prediction' column. The 'prediction' column can be FloatType, VectorUDT or Array of VectorUDT depending on model outputs shape. """ if isinstance(data, DataFrame): invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in prediction") if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in prediction") data = process_xshards_of_pandas_dataframe(data, feature_cols) invalidInputError(not is_tf_data_dataset(data), "tf.data.Dataset currently cannot be used for estimator prediction") dataset = to_dataset(data, batch_size=-1, batch_per_thread=batch_size, validation_data=None, feature_cols=feature_cols, label_cols=None, hard_code_batch_size=False, sequential_order=True, shuffle=False, auto_shard_files=auto_shard_files, ) predicted_rdd = self.model.predict(dataset, batch_size) if isinstance(data, DataFrame): return convert_predict_rdd_to_dataframe(data, predicted_rdd) elif isinstance(data, SparkXShards): return convert_predict_rdd_to_xshard(data, predicted_rdd) else: return predicted_rdd
[docs] def evaluate(self, data, batch_size=32, feature_cols=None, label_cols=None, auto_shard_files=False ): """ Evaluate model. :param data: evaluation data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a tuple of numpy arrays. If data is tf.data.Dataset, each element is [feature tensor tuple, label tensor tuple] :param batch_size: batch size per thread. :param feature_cols: feature_cols: feature column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param label_cols: label column names if train data is Spark DataFrame or XShards of Pandas DataFrame. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is False. :return: evaluation result as a dictionary of {'metric name': metric value} """ if isinstance(data, DataFrame): invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in evaluation") invalidInputError(label_cols is not None, "label columns is None; it should not be None in evaluation") if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': invalidInputError(feature_cols is not None, "feature columns is None; it should not be None in evaluation") invalidInputError(label_cols is not None, "label columns is None; it should not be None in evaluation") data = process_xshards_of_pandas_dataframe(data, feature_cols, label_cols) dataset = to_dataset(data, batch_size=-1, batch_per_thread=batch_size, validation_data=None, feature_cols=feature_cols, label_cols=label_cols, hard_code_batch_size=False, sequential_order=True, shuffle=False, auto_shard_files=auto_shard_files ) return self.model.evaluate(dataset, batch_per_thread=batch_size)
[docs] @enable_multi_fs_save def save_keras_model(self, path, overwrite=True): """ Save tensorflow keras model in this estimator. :param path: keras model save path. :param overwrite: Whether to silently overwrite any existing file at the target location. """ self.model.save_model(path, overwrite=overwrite)
[docs] def get_model(self): """ Get the trained Keras model :return: The trained Keras model """ return self.model.model
[docs] @enable_multi_fs_save def save(self, model_path, overwrite=True): """ Save model to model_path :param model_path: path to save the trained model. :param overwrite: Whether to silently overwrite any existing file at the target location. :return: """ self.save_keras_model(model_path, overwrite=overwrite)
[docs] @enable_multi_fs_load def load(self, model_path): """ Load existing keras model :param model_path: Path to the existing keras model. :return: """ self.model = KerasModel.load_model(model_path)
[docs] def clear_gradient_clipping(self): """ Clear gradient clipping parameters. In this case, gradient clipping will not be applied. In order to take effect, it needs to be called before fit. :return: """ self.clip_norm = None self.clip_min = None self.clip_max = None
[docs] def set_constant_gradient_clipping(self, min, max): """ Set constant gradient clipping during the training process. In order to take effect, it needs to be called before fit. :param min: The minimum value to clip by. :param max: The maximum value to clip by. :return: """ invalidInputError(min > 0, "clip value should be larger than 0") invalidInputError(min < max, "clip max should be larger than clip min") self.clip_min = min self.clip_max = max
[docs] def set_l2_norm_gradient_clipping(self, clip_norm): """ Clip gradient to a maximum L2-Norm during the training process. In order to take effect, it needs to be called before fit. :param clip_norm: Gradient L2-Norm threshold. :return: """ self.clip_norm = clip_norm
[docs] @enable_multi_fs_save def save_keras_weights(self, filepath, overwrite=True, save_format=None): """ Save tensorflow keras model weights in this estimator. :param filepath: keras model weights save path. :param overwrite: Whether to silently overwrite any existing file at the target location. :param save_format: Either 'tf' or 'h5'. A `filepath` ending in '.h5' or '.keras' will default to HDF5 if `save_format` is `None`. Otherwise `None` defaults to 'tf'. """ self.model.save_weights(filepath, overwrite, save_format)
[docs] @enable_multi_fs_load def load_keras_weights(self, filepath, by_name=False): """ Save tensorflow keras model in this estimator. :param filepath: keras model weights save path. :param by_name: Boolean, whether to load weights by name or by topological order. Only topological loading is supported for weight files in TensorFlow format. """ self.model.load_weights(filepath, by_name)