Source code for bigdl.nano.automl.tf.keras.Sequential

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import tensorflow as tf
import copy

from bigdl.nano.automl.utils import proxy_methods
from bigdl.nano.automl.tf.mixin import HPOMixin
from bigdl.nano.automl.hpo.space import AutoObject


[docs]@proxy_methods class Sequential(HPOMixin, tf.keras.Sequential): """Tf.keras.Sequential with HPO capabilities.""" def __init__(self, layers=None, name=None): """ Initialzier. :param layers: a list of layers (optional). Defults to None. :param name: str(optional), name of the model. Defaults to None """ super().__init__(layers=None, name=name) # TODO add more flexibility for args parsing # self.init_args = args # self.init_kwargs = kwargs self.model_class = tf.keras.Sequential self.name_ = name self.lazylayers_ = layers if layers is not None else [] def add(self, layer): """ Add a layer. :param layer: the layer to be added. """ # just add all layers into a cache # and layer will be instantiated later self.lazylayers_.append(layer) def _model_init_args(self, trial): # for lazy model init # use backend to sample model init args # and construct the actual layers instantiated_layers = [] for layer in self.lazylayers_: if isinstance(layer, AutoObject): newl = self.backend.instantiate(trial, layer) else: newl = copy.deepcopy(layer) instantiated_layers.append(newl) return {'layers': instantiated_layers, 'name': self.name_} def _get_model_init_args_func_kwargs(self): """Return the kwargs of _model_init_args_func except trial.""" return { 'lazylayers': self.lazylayers_, 'name': self.name_, 'backend': self.backend } @staticmethod def _model_init_args_func(trial, lazylayers, name, backend): instantiated_layers = [] for layer in lazylayers: if isinstance(layer, AutoObject): newl = backend.instantiate(trial, layer) else: newl = copy.deepcopy(layer) instantiated_layers.append(newl) return {'layers': instantiated_layers, 'name': name}