Source code for bigdl.orca.learn.pytorch.pytorch_spark_estimator

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from bigdl.dllib.utils.file_utils import enable_multi_fs_load, enable_multi_fs_save
from bigdl.orca.data.utils import row_to_sample, xshard_to_sample
from bigdl.orca.learn.utils import convert_predict_rdd_to_dataframe, bigdl_metric_results_to_dict, \
    process_xshards_of_pandas_dataframe
from bigdl.dllib.estimator.estimator import Estimator as SparkEstimator
from bigdl.orca.learn.spark_estimator import Estimator as OrcaSparkEstimator
from bigdl.orca.learn.optimizers import Optimizer as OrcaOptimizer, SGD
from bigdl.orca.data import SparkXShards
from bigdl.dllib.optim.optimizer import MaxEpoch, OptimMethod
from bigdl.dllib.feature.common import FeatureSet
from torch.optim.optimizer import Optimizer as TorchOptimizer
from torch.utils.data import DataLoader
from pyspark.sql import DataFrame
import torch
import types
from bigdl.dllib.utils.log4Error import *


[docs]class PyTorchSparkEstimator(OrcaSparkEstimator): def __init__(self, model, loss, optimizer, config=None, metrics=None, model_dir=None, bigdl_type="float"): from bigdl.orca.torch import TorchModel, TorchLoss, TorchOptim self.loss = loss self.optimizer = optimizer self.config = {} if config is None else config if self.loss is None: self.loss = TorchLoss() else: self.loss = TorchLoss.from_pytorch(loss) if isinstance(model, types.FunctionType): def model_creator(self): return model(self.config) model = model_creator(self) if self.optimizer is None: from bigdl.orca.learn.optimizers.schedule import Default self.optimizer = SGD(learningrate_schedule=Default()).get_optimizer() elif isinstance(self.optimizer, TorchOptimizer): self.optimizer = TorchOptim.from_pytorch(self.optimizer) elif isinstance(self.optimizer, OrcaOptimizer): self.optimizer = self.optimizer.get_optimizer() else: invalidInputError(False, "Only PyTorch optimizer and orca optimizer are supported") from bigdl.orca.learn.metrics import Metric self.metrics = Metric.convert_metrics_list(metrics) self.log_dir = None self.app_name = None self.model_dir = model_dir self.model = TorchModel.from_pytorch(model) self.estimator = SparkEstimator(self.model, self.optimizer, model_dir, bigdl_type=bigdl_type) def _handle_dataframe(self, data, validation_data, feature_cols, label_cols): schema = data.schema train_rdd = data.rdd.map(lambda row: row_to_sample(row, schema, feature_cols, label_cols)) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: invalidInputError(isinstance(validation_data, DataFrame), "validation_data should also be a DataFrame") val_feature_set = FeatureSet.sample_rdd(validation_data.rdd.map( lambda row: row_to_sample(row, schema, feature_cols, label_cols))) return train_feature_set, val_feature_set def _handle_xshards(self, data, validation_data): train_rdd = data.rdd.flatMap(xshard_to_sample) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: invalidInputError(isinstance(validation_data, SparkXShards), "validation_data should be a SparkXShards") val_feature_set = FeatureSet.sample_rdd(validation_data.rdd.flatMap(xshard_to_sample)) return train_feature_set, val_feature_set def _handle_data_loader(self, data, validation_data): train_feature_set = FeatureSet.pytorch_dataloader(data, "", "") if validation_data is None: val_feature_set = None else: invalidInputError(isinstance(validation_data, DataLoader) or callable(data), "validation_data should be a pytorch DataLoader or a" " callable data_creator") val_feature_set = FeatureSet.pytorch_dataloader(validation_data) return train_feature_set, val_feature_set
[docs] def fit(self, data, epochs=1, batch_size=None, feature_cols=None, label_cols=None, validation_data=None, checkpoint_trigger=None): """ Train this torch model with train data. :param data: train data. It can be a XShards, Spark Dataframe, PyTorch DataLoader and PyTorch DataLoader creator function that takes config and batch_size as argument and returns a PyTorch DataLoader for training. If data is an XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param epochs: Number of epochs to train the model. Default: 1. :param batch_size: Batch size used for training. Only used when data is an XShards. Default: 32. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :param label_cols: Label column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :param validation_data: Validation data. XShards, PyTorch DataLoader and PyTorch DataLoader creator function are supported. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param checkpoint_trigger: Orca Trigger to set a checkpoint. :return: The trained estimator object. """ from bigdl.orca.learn.trigger import Trigger end_trigger = MaxEpoch(epochs) if isinstance(data, DataLoader): invalidInputError(batch_size is None and data.batch_size > 0, "When using PyTorch Dataloader as input, you need to specify" " the batch size in DataLoader and don't specify batch_size" " in the fit method.") else: invalidInputError(batch_size is not None and batch_size > 0, "batch_size should be greater than 0") checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) if self.log_dir is not None and self.app_name is not None: self.estimator.set_tensorboard(self.log_dir, self.app_name) if validation_data: invalidInputError(self.metrics is not None, "You should provide metrics when creating this estimator" " if you provide validation_data.") if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': data, validation_data = process_xshards_of_pandas_dataframe(data, feature_cols, label_cols, validation_data, mode="fit") train_fset, val_fset = self._handle_xshards(data, validation_data) self.estimator.train(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics, batch_size) elif isinstance(data, DataFrame): train_fset, val_fset = self._handle_dataframe(data, validation_data, feature_cols, label_cols) self.estimator.train(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics, batch_size) elif isinstance(data, DataLoader) or callable(data) or isinstance(data, types.FunctionType): if isinstance(data, types.FunctionType): data, validation_data = data(self.config, batch_size), validation_data(self.config, batch_size) train_fset, val_fset = self._handle_data_loader(data, validation_data) self.estimator.train_minibatch(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics) else: invalidInputError(False, "Data and validation data should be SparkXShards, DataLoaders or " "callable data_creators but get " + data.__class__.__name__) return self
[docs] def predict(self, data, batch_size=4, feature_cols=None): """ Predict input data. :param data: data to be predicted. It can be an XShards or a Spark Dataframe. If it is an XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature}, where feature is a numpy array or a list of numpy arrays. :param batch_size: batch size used for inference. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :return: predicted result. The predict result is a XShards, each partition of the XShards is a dictionary of {'prediction': result}, where result is a numpy array or a list of numpy arrays. """ from bigdl.orca.learn.utils import convert_predict_rdd_to_xshard if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': data = process_xshards_of_pandas_dataframe(data, feature_cols) from bigdl.orca.data.utils import xshard_to_sample data_rdd = data.rdd.flatMap(xshard_to_sample) elif isinstance(data, DataFrame): schema = data.schema data_rdd = data.rdd.map(lambda row: row_to_sample(row, schema, feature_cols, None)) else: invalidInputError(False, "Data should be XShards, each element needs to be {'x': a feature " "numpy array}.") predicted_rdd = self.model.predict(data_rdd, batch_size=batch_size) if isinstance(data, SparkXShards): result = convert_predict_rdd_to_xshard(data, predicted_rdd) else: result = convert_predict_rdd_to_dataframe(data, predicted_rdd) return result
[docs] def evaluate(self, data, batch_size=None, feature_cols=None, label_cols=None, validation_metrics=None): """ Evaluate model. :param data: data: evaluation data. It can be an XShards, Spark Dataframe, PyTorch DataLoader and PyTorch DataLoader creator function. If data is an XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param batch_size: Batch size used for evaluation. Only used when data is a SparkXShard. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :param label_cols: Label column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :param validation_metrics: Orca validation metrics to be computed on validation_data. :return: validation results. """ from bigdl.orca.data.utils import xshard_to_sample invalidInputError(data is not None, "validation data shouldn't be None") invalidInputError(self.metrics is not None, "metrics shouldn't be None, please specify the metrics argument" " when creating this estimator.") if isinstance(data, DataLoader): invalidInputError(batch_size is None and data.batch_size > 0, "When using PyTorch Dataloader as input, you need to specify" " the batch size in DataLoader and don't specify batch_size" " in the fit method.") else: invalidInputError(batch_size is not None and batch_size > 0, "batch_size should be greater than 0") if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': data = process_xshards_of_pandas_dataframe(data, feature_cols, label_cols) val_feature_set = FeatureSet.sample_rdd(data.rdd.flatMap(xshard_to_sample)) result = self.estimator.evaluate(val_feature_set, self.metrics, batch_size) elif isinstance(data, DataFrame): schema = data.schema val_feature_set = FeatureSet.sample_rdd(data.rdd.map( lambda row: row_to_sample(row, schema, feature_cols, label_cols))) result = self.estimator.evaluate(val_feature_set, self.metrics, batch_size) elif isinstance(data, DataLoader) or callable(data) or isinstance(data, types.FunctionType): if isinstance(data, types.FunctionType): data = data(self.config, batch_size) val_feature_set = FeatureSet.pytorch_dataloader(data) result = self.estimator.evaluate_minibatch(val_feature_set, self.metrics) else: invalidInputError(False, "Data should be a SparkXShards, a DataLoader or a callable " "data_creator, but get " + data.__class__.__name__) return bigdl_metric_results_to_dict(result)
[docs] def get_model(self): """ Get the trained PyTorch model. :return: The trained PyTorch model. """ return self.model.to_pytorch()
def _get_optimizer_path(self, model_path): if "." in model_path: path_split = model_path.rsplit('.', 1) return path_split[0] + "_optim." + path_split[1] else: return model_path + "_optim"
[docs] @enable_multi_fs_save def save(self, model_path): """ Saves the Estimator state (including model and optimizer) to the provided model_path. :param model_path: path to save the model. :return: model_path """ optim_path = self._get_optimizer_path(model_path) torch.save(self.get_model().state_dict(), model_path) if self.optimizer is not None: self.optimizer.save(path=optim_path, overWrite=True) return model_path
[docs] @enable_multi_fs_load def load(self, model_path): """ Load the Estimator state (model and possibly with optimizer) from provided model_path. The model file should be generated by the save method of this estimator, or by ``torch.save(state_dict, model_path)``, where `state_dict` can be obtained by the ``state_dict()`` method of a pytorch model. :param model_path: path to the saved model. :return: """ from bigdl.orca.torch import TorchModel import os try: pytorch_model = self.get_model() pytorch_model.load_state_dict(torch.load(model_path)) self.model = TorchModel.from_pytorch(pytorch_model) except Exception: invalidInputError(False, "Cannot load the PyTorch model. Please check your model path.") optim_path = self._get_optimizer_path(model_path) if os.path.isfile(optim_path): try: self.optimizer = OptimMethod.load(optim_path) except Exception: invalidInputError(False, "Cannot load the optimizer. Only `bigdl.dllib.optim.optimizer." "OptimMethod` is supported for loading.") else: self.optimizer = None self.estimator = SparkEstimator(self.model, self.optimizer, self.model_dir)
def __load_bigdl_model(self, path, bigdl_type="float"): from bigdl.dllib.utils.common import callBigDlFunc from bigdl.dllib.nn.layer import Layer jmodel = callBigDlFunc(bigdl_type, "loadBigDL", path) return Layer.of(jmodel)
[docs] def load_orca_checkpoint(self, path, version=None, prefix=None): """ Load existing checkpoint. To load a specific checkpoint, please provide both `version` and `perfix`. If `version` is None, then the latest checkpoint will be loaded. :param path: Path to the existing checkpoint (or directory containing Orca checkpoint files). :param version: checkpoint version, which is the suffix of model.* file, i.e., for modle.4 file, the version is 4. If it is None, then load the latest checkpoint. :param prefix: optimMethod prefix, for example 'optimMethod-TorchModelf53bddcc'. :return: """ import os from bigdl.dllib.nn.layer import Model from bigdl.dllib.optim.optimizer import OptimMethod from bigdl.orca.learn.utils import find_latest_checkpoint from bigdl.orca.torch import TorchModel if version is None: path, prefix, version = find_latest_checkpoint(path, model_type="pytorch") if path is None: invalidInputError(False, "Cannot find PyTorch checkpoint, please check your checkpoint" " path.") else: invalidInputError(prefix is not None, "You should provide optimMethod prefix," " for example 'optimMethod-TorchModelf53bddcc'") try: loaded_model = self.__load_bigdl_model(os.path.join(path, "model.{}".format(version))) self.model = TorchModel.from_value(loaded_model.value) self.optimizer = OptimMethod.load(os.path.join(path, "{}.{}".format(prefix, version))) except Exception as e: invalidInputError(False, "Cannot load PyTorch checkpoint, please check your checkpoint path " "and checkpoint type." + str(e)) self.estimator = SparkEstimator(self.model, self.optimizer, self.model_dir)
[docs] def get_train_summary(self, tag=None): """ Get the scalar from model train summary. This method will return a list of summary data of [iteration_number, scalar_value, timestamp]. :param tag: The string variable represents the scalar wanted """ return self.estimator.get_train_summary(tag=tag)
[docs] def get_validation_summary(self, tag=None): """ Get the scalar from model validation summary. This method will return a list of summary data of [iteration_number, scalar_value, timestamp]. Note that the metric and tag may not be consistent. Please look up following form to pass tag parameter. Left side is your metric during compile. Right side is the tag you should pass. >>> 'Accuracy' | 'Top1Accuracy' >>> 'BinaryAccuracy' | 'Top1Accuracy' >>> 'CategoricalAccuracy' | 'Top1Accuracy' >>> 'SparseCategoricalAccuracy' | 'Top1Accuracy' >>> 'AUC' | 'AucScore' >>> 'HitRatio' | 'HitRate@k' (k is Top-k) >>> 'Loss' | 'Loss' >>> 'MAE' | 'MAE' >>> 'NDCG' | 'NDCG' >>> 'TFValidationMethod' | '${name + " " + valMethod.toString()}' >>> 'Top5Accuracy' | 'Top5Accuracy' >>> 'TreeNNAccuracy' | 'TreeNNAccuracy()' >>> 'MeanAveragePrecision' | 'MAP@k' (k is Top-k) (BigDL) >>> 'MeanAveragePrecision' | 'PascalMeanAveragePrecision' (Zoo) >>> 'StatelessMetric' | '${name}' :param tag: The string variable represents the scalar wanted """ return self.estimator.get_validation_summary(tag=tag)
[docs] def clear_gradient_clipping(self): """ Clear gradient clipping parameters. In this case, gradient clipping will not be applied. In order to take effect, it needs to be called before fit. :return: """ self.estimator.clear_gradient_clipping()
[docs] def set_constant_gradient_clipping(self, min, max): """ Set constant gradient clipping during the training process. In order to take effect, it needs to be called before fit. :param min: The minimum value to clip by. :param max: The maximum value to clip by. :return: """ self.estimator.set_constant_gradient_clipping(min=min, max=max)
[docs] def set_l2_norm_gradient_clipping(self, clip_norm): """ Clip gradient to a maximum L2-Norm during the training process. In order to take effect, it needs to be called before fit. :param clip_norm: Gradient L2-Norm threshold. :return: """ self.estimator.set_l2_norm_gradient_clipping(clip_norm=clip_norm)