# Optimizer -------- ## Adam ## **Scala:** ```scala val optim = new Adam(learningRate=1e-3, learningRateDecay=0.0, beta1=0.9, beta2=0.999, Epsilon=1e-8) ``` **Python:** ```python optim = Adam(learningrate=1e-3, learningrate_decay=0.0, beta1=0.9, beta2=0.999, epsilon=1e-8, bigdl_type="float") ``` An implementation of Adam optimization, first-order gradient-based optimization of stochastic objective functions. http://arxiv.org/pdf/1412.6980.pdf `learningRate` learning rate. Default value is 1e-3. `learningRateDecay` learning rate decay. Default value is 0.0. `beta1` first moment coefficient. Default value is 0.9. `beta2` second moment coefficient. Default value is 0.999. `Epsilon` for numerical stability. Default value is 1e-8. **Scala example:** ```scala import com.intel.analytics.bigdl.dllib.optim._ import com.intel.analytics.bigdl.dllib.tensor.Tensor import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric.NumericFloat import com.intel.analytics.bigdl.dllib.utils.T val optm = new Adam(learningRate=0.002) def rosenBrock(x: Tensor[Float]): (Float, Tensor[Float]) = { // (1) compute f(x) val d = x.size(1) // x1 = x(i) val x1 = Tensor[Float](d - 1).copy(x.narrow(1, 1, d - 1)) // x(i + 1) - x(i)^2 x1.cmul(x1).mul(-1).add(x.narrow(1, 2, d - 1)) // 100 * (x(i + 1) - x(i)^2)^2 x1.cmul(x1).mul(100) // x0 = x(i) val x0 = Tensor[Float](d - 1).copy(x.narrow(1, 1, d - 1)) // 1-x(i) x0.mul(-1).add(1) x0.cmul(x0) // 100*(x(i+1) - x(i)^2)^2 + (1-x(i))^2 x1.add(x0) val fout = x1.sum() // (2) compute f(x)/dx val dxout = Tensor[Float]().resizeAs(x).zero() // df(1:D-1) = - 400*x(1:D-1).*(x(2:D)-x(1:D-1).^2) - 2*(1-x(1:D-1)); x1.copy(x.narrow(1, 1, d - 1)) x1.cmul(x1).mul(-1).add(x.narrow(1, 2, d - 1)).cmul(x.narrow(1, 1, d - 1)).mul(-400) x0.copy(x.narrow(1, 1, d - 1)).mul(-1).add(1).mul(-2) x1.add(x0) dxout.narrow(1, 1, d - 1).copy(x1) // df(2:D) = df(2:D) + 200*(x(2:D)-x(1:D-1).^2); x0.copy(x.narrow(1, 1, d - 1)) x0.cmul(x0).mul(-1).add(x.narrow(1, 2, d - 1)).mul(200) dxout.narrow(1, 2, d - 1).add(x0) (fout, dxout) } val x = Tensor(2).fill(0) > print(optm.optimize(rosenBrock, x)) (0.0019999996 0.0 [com.intel.analytics.bigdl.tensor.DenseTensor$mcD$sp of size 2],[D@302d88d8) ``` **Python example:** ```python optim_method = Adam(learningrate=0.002) optimizer = Optimizer( model=mlp_model, training_rdd=train_data, criterion=ClassNLLCriterion(), optim_method=optim_method, end_trigger=MaxEpoch(20), batch_size=32) ``` ## SGD ## **Scala:** ```scala val optimMethod = new SGD(learningRate= 1e-3,learningRateDecay=0.0, weightDecay=0.0,momentum=0.0,dampening=Double.MaxValue, nesterov=false,learningRateSchedule=Default(), learningRates=null,weightDecays=null) ``` **Python:** ```python optim_method = SGD(learningrate=1e-3,learningrate_decay=0.0,weightdecay=0.0, momentum=0.0,dampening=DOUBLEMAX,nesterov=False, leaningrate_schedule=None,learningrates=None, weightdecays=None,bigdl_type="float") ``` A plain implementation of SGD which provides optimize method. After setting optimization method when create Optimize, Optimize will call optimization method at the end of each iteration. **Scala example:** ```scala val optimMethod = new SGD[Float](learningRate= 1e-3,learningRateDecay=0.0, weightDecay=0.0,momentum=0.0,dampening=Double.MaxValue, nesterov=false,learningRateSchedule=Default(), learningRates=null,weightDecays=null) optimizer.setOptimMethod(optimMethod) ``` **Python example:** ```python optim_method = SGD(learningrate=1e-3,learningrate_decay=0.0,weightdecay=0.0, momentum=0.0,dampening=DOUBLEMAX,nesterov=False, leaningrate_schedule=None,learningrates=None, weightdecays=None,bigdl_type="float") optimizer = Optimizer( model=mlp_model, training_rdd=train_data, criterion=ClassNLLCriterion(), optim_method=optim_method, end_trigger=MaxEpoch(20), batch_size=32) ``` ## Adadelta ## *AdaDelta* implementation for *SGD* It has been proposed in `ADADELTA: An Adaptive Learning Rate Method`. http://arxiv.org/abs/1212.5701. **Scala:** ```scala val optimMethod = new Adadelta(decayRate = 0.9, Epsilon = 1e-10) ``` **Python:** ```python optim_method = AdaDelta(decayrate = 0.9, epsilon = 1e-10) ``` **Scala example:** ```scala optimizer.setOptimMethod(new Adadelta(0.9, 1e-10)) ``` **Python example:** ```python optimizer = Optimizer( model=mlp_model, training_rdd=train_data, criterion=ClassNLLCriterion(), optim_method=Adadelta(0.9, 0.00001), end_trigger=MaxEpoch(20), batch_size=32) ``` ## RMSprop ## An implementation of RMSprop (Reference: http://arxiv.org/pdf/1308.0850v5.pdf, Sec 4.2) * learningRate : learning rate * learningRateDecay : learning rate decay * decayRate : decayRate, also called rho * Epsilon : for numerical stability ## Adamax ## An implementation of Adamax http://arxiv.org/pdf/1412.6980.pdf Arguments: * learningRate : learning rate * beta1 : first moment coefficient * beta2 : second moment coefficient * Epsilon : for numerical stability Returns: the new x vector and the function list {fx}, evaluated before the update ## Adagrad ## **Scala:** ```scala val adagrad = new Adagrad(learningRate = 1e-3, learningRateDecay = 0.0, weightDecay = 0.0) ``` An implementation of Adagrad. See the original paper: **Scala example:** ```scala import com.intel.analytics.bigdl.dllib.tensor.TensorNumericMath.TensorNumeric.NumericFloat import com.intel.analytics.bigdl.dllib.optim._ import com.intel.analytics.bigdl.dllib.tensor._ import com.intel.analytics.bigdl.dllib.utils.T val adagrad = new Adagrad(0.01, 0.0, 0.0) def feval(x: Tensor[Float]): (Float, Tensor[Float]) = { // (1) compute f(x) val d = x.size(1) // x1 = x(i) val x1 = Tensor[Float](d - 1).copy(x.narrow(1, 1, d - 1)) // x(i + 1) - x(i)^2 x1.cmul(x1).mul(-1).add(x.narrow(1, 2, d - 1)) // 100 * (x(i + 1) - x(i)^2)^2 x1.cmul(x1).mul(100) // x0 = x(i) val x0 = Tensor[Float](d - 1).copy(x.narrow(1, 1, d - 1)) // 1-x(i) x0.mul(-1).add(1) x0.cmul(x0) // 100*(x(i+1) - x(i)^2)^2 + (1-x(i))^2 x1.add(x0) val fout = x1.sum() // (2) compute f(x)/dx val dxout = Tensor[Float]().resizeAs(x).zero() // df(1:D-1) = - 400*x(1:D-1).*(x(2:D)-x(1:D-1).^2) - 2*(1-x(1:D-1)); x1.copy(x.narrow(1, 1, d - 1)) x1.cmul(x1).mul(-1).add(x.narrow(1, 2, d - 1)).cmul(x.narrow(1, 1, d - 1)).mul(-400) x0.copy(x.narrow(1, 1, d - 1)).mul(-1).add(1).mul(-2) x1.add(x0) dxout.narrow(1, 1, d - 1).copy(x1) // df(2:D) = df(2:D) + 200*(x(2:D)-x(1:D-1).^2); x0.copy(x.narrow(1, 1, d - 1)) x0.cmul(x0).mul(-1).add(x.narrow(1, 2, d - 1)).mul(200) dxout.narrow(1, 2, d - 1).add(x0) (fout, dxout) } val x = Tensor(2).fill(0) val config = T("learningRate" -> 1e-1) for (i <- 1 to 10) { adagrad.optimize(feval, x, config, config) } x after optimize: 0.27779138 0.07226955 [com.intel.analytics.bigdl.tensor.DenseTensor$mcF$sp of size 2] ``` ## LBFGS ## **Scala:** ```scala val optimMethod = new LBFGS(maxIter=20, maxEval=Double.MaxValue, tolFun=1e-5, tolX=1e-9, nCorrection=100, learningRate=1.0, lineSearch=None, lineSearchOptions=None) ``` **Python:** ```python optim_method = LBFGS(max_iter=20, max_eval=Double.MaxValue, \ tol_fun=1e-5, tol_x=1e-9, n_correction=100, \ learning_rate=1.0, line_search=None, line_search_options=None) ``` This implementation of L-BFGS relies on a user-provided line search function (state.lineSearch). If this function is not provided, then a simple learningRate is used to produce fixed size steps. Fixed size steps are much less costly than line searches, and can be useful for stochastic problems. The learning rate is used even when a line search is provided.This is also useful for large-scale stochastic problems, where opfunc is a noisy approximation of f(x). In that case, the learning rate allows a reduction of confidence in the step size. **Parameters:** * maxIter - Maximum number of iterations allowed. Default: 20 * maxEval - Maximum number of function evaluations. Default: Double.MaxValue * tolFun - Termination tolerance on the first-order optimality. Default: 1e-5 * tolX - Termination tol on progress in terms of func/param changes. Default: 1e-9 * learningRate - the learning rate. Default: 1.0 * lineSearch - A line search function. Default: None * lineSearchOptions - If no line search provided, then a fixed step size is used. Default: None **Scala example:** ```scala val optimMethod = new LBFGS(maxIter=20, maxEval=Double.MaxValue, tolFun=1e-5, tolX=1e-9, nCorrection=100, learningRate=1.0, lineSearch=None, lineSearchOptions=None) optimizer.setOptimMethod(optimMethod) ``` **Python example:** ```python optim_method = LBFGS(max_iter=20, max_eval=DOUBLEMAX, \ tol_fun=1e-5, tol_x=1e-9, n_correction=100, \ learning_rate=1.0, line_search=None, line_search_options=None) optimizer = Optimizer( model=mlp_model, training_rdd=train_data, criterion=ClassNLLCriterion(), optim_method=optim_method, end_trigger=MaxEpoch(20), batch_size=32) ``` ## Ftrl ## **Scala:** ```scala val optimMethod = new Ftrl( learningRate = 1e-3, learningRatePower = -0.5, initialAccumulatorValue = 0.1, l1RegularizationStrength = 0.0, l2RegularizationStrength = 0.0, l2ShrinkageRegularizationStrength = 0.0) ``` **Python:** ```python optim_method = Ftrl(learningrate = 1e-3, learningrate_power = -0.5, \ initial_accumulator_value = 0.1, l1_regularization_strength = 0.0, \ l2_regularization_strength = 0.0, l2_shrinkage_regularization_strength = 0.0) ``` An implementation of (Ftrl)[https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf.] Support L1 penalty, L2 penalty and shrinkage-type L2 penalty. **Parameters:** * learningRate: learning rate * learningRatePower: double, must be less or equal to zero. Default is -0.5. * initialAccumulatorValue: double, the starting value for accumulators, require zero or positive values. Default is 0.1. * l1RegularizationStrength: double, must be greater or equal to zero. Default is zero. * l2RegularizationStrength: double, must be greater or equal to zero. Default is zero. * l2ShrinkageRegularizationStrength: double, must be greater or equal to zero. Default is zero. This differs from l2RegularizationStrength above. L2 above is a stabilization penalty, whereas this one is a magnitude penalty. **Scala example:** ```scala val optimMethod = new Ftrl(learningRate = 5e-3, learningRatePower = -0.5, initialAccumulatorValue = 0.01) optimizer.setOptimMethod(optimMethod) ``` **Python example:** ```python optim_method = Ftrl(learningrate = 5e-3, \ learningrate_power = -0.5, \ initial_accumulator_value = 0.01) optimizer = Optimizer( model=mlp_model, training_rdd=train_data, criterion=ClassNLLCriterion(), optim_method=optim_method, end_trigger=MaxEpoch(20), batch_size=32) ``` ## ParallelAdam ## Multi-Thread version of [Adam](#adam). **Scala:** ```scala val optim = new ParallelAdam(learningRate=1e-3, learningRateDecay=0.0, beta1=0.9, beta2=0.999, Epsilon=1e-8, parallelNum=Engine.coreNumber()) ``` **Python:** ```python optim = ParallelAdam(learningrate=1e-3, learningrate_decay=0.0, beta1=0.9, beta2=0.999, epsilon=1e-8, parallel_num=get_node_and_core_number()[1], bigdl_type="float") ```